Abstract
This study addressed the development of a novel biomarker for 2-chlorobenzalmalononitrile (CS) gas exposure. Using liquid chromatographic and mass spectrometric techniques, we found that CS underwent rapid hydrolysis into 2-chlorobenzaldehyde (2-CBA), a highly reactive intermediate that reacted swiftly with endogenous cysteine (Cys) and Cys residues in proteins, producing a stable 2-(2-chlorophenyl)thiazolidine-4-carboxylic acid adduct (ClPh-SPro) in high yield, which may be used as a CS exposure dosimeter. In particular, it was found that most CS was rapidly hydrolyzed under physiologically relevant conditions, with over 90% of CS being converted into 2-CBA in as short as 20 min. The resultant 2-CBA then reacted swiftly with Cys (k = 0.086 M-1 s-1), forming the stable thiazolidine-4-carboxylic acid adduct, which was detected both in the intracellular fluid and in the cell-isolated proteins of CS-exposed lung cells, as well as in purified human serum albumin. It is expected that the results of this study will facilitate exposure assessment for bystanders who may have been exposed to high levels of CS gas unwillingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.