Abstract
The inhibition of adenine nucleotide hydrolysis by heparin and chondroitin sulfate (sulfated polysaccharides) was studied in membrane preparations from liver and kidney of adult rats. Hydrolysis was measured by the activity of NTPDase and 5′-nucleotidase. The inhibition of NTPDase by heparin was observed at three different pH values (6.0, 8.0 and 10.0). In liver, the maximal inhibition observed for ATP and ADP hydrolysis was about 80% at pH 8.0 and 70% at pH 6.0 and 10.0. Similarly to the effect observed in liver, heparin caused inhibition of ATP and ADP hydrolysis that reached a maximum of 70% in kidney (pH 8.0). Na +, K + and Rb + changed the inhibitory potency of heparin, suggesting that its effects may be related to charge interaction. In addition to heparin, chondroitin sulfate also caused a dose-dependent inhibition in liver and kidney membranes. The maximal inhibition observed for ATP and ADP hydrolysis was about 60 and 50%, respectively. In addition, the hepatic and renal activity of 5′-nucleotidase was inhibited by heparin and chondroitin sulfate, except for kidney membranes where chondroitin sulfate did not alter AMP hydrolysis. On this basis, the findings indicate that glycosaminoglycans have a potential role as inhibitors of adenine nucleotide hydrolysis on the surface of liver and kidney cell membranes in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biochemistry and Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.