Abstract

BackgroundFMS-like tyrosine kinase 3 (FLT3), a key target protein for treating acute myeloid leukemia, has recently been found to be closely related to ferroptosis in breast cancer (BC). However, the mechanism by which FLT3 regulates ferroptosis in BC remains unknown. Whether this regulatory relationship can be exploited for BC treatment needs further exploration. MethodsThis study combined analysis from The Cancer Genome Atlas database with immunohistochemistry/quantitative reverse transcription-PCR/Western blot experiments to verify the expression of FLT3 in BC. FLT3 knockdown/overexpression plasmids were used in conjunction with mitochondrial autophagy inducers to treat BC cells, analyzing the effects of FLT3 on autophagy and ferroptosis. Key transcription factors for FLT3 were determined through predictions from the KnockTF database and dual luciferase/chromatin immunoprecipitation experiments, further analyzing the impact of this regulatory axis on autophagy and ferroptosis in BC cells. ResultsFLT3 was significantly overexpressed in BC tissues and cells. Overexpression of FLT3 could inhibit autophagy and ferroptosis in BC cells, a regulation that was restored upon the addition of mitochondrial autophagy inducers. Additionally, transcription factor AP-2 gamma (TFAP2C) could mediate the transcriptional activation of FLT3, further inhibiting ferroptosis induced by mitochondrial autophagy. ConclusionThe TFAP2C/FLT3 axis reduced ferroptosis in BC cells by inhibiting mitochondrial autophagy. These research findings elucidated the mechanism by which FLT3 regulated ferroptosis in BC and provided potential targets for BC treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.