Abstract

Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2′-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a “hinge” located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.

Highlights

  • Urease activity (E.C. 3.5.1.5) constitutes one of the biological steps in the global nitrogen cycle [1,2].It is present in bacteria, fungi and plants and is one of the enzymes selected as a target for controlling medical [3], agricultural [4] and environmental issues [5]

  • Our results suggest that the inhibition produced by DSF is most likely due to the blocking of Cys592

  • We found that incubation of enzyme with produces a quenching in Citrullus vulgaris (CVU) autofluorescence (Figure 4)

Read more

Summary

Introduction

Urease activity (E.C. 3.5.1.5) constitutes one of the biological steps in the global nitrogen cycle [1,2]. It is present in bacteria, fungi and plants and is one of the enzymes selected as a target for controlling medical [3], agricultural [4] and environmental issues [5]. The Ni centers and the carbamylated Lys residue are located in the active site and are relatively immobile, but His593 (Jack bean urease, JBU numeration, here after used) is located in a Molecules 2016, 21, 1628; doi:10.3390/molecules21121628 www.mdpi.com/journal/molecules

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.