Abstract

The present work demonstrates effective inhibition of field crystallization of amorphous anodic niobium oxide by incorporation of silicon species from substrate. The field crystallization, detrimental for capacitor application of niobium, occurs during anodizing of magnetron sputtered niobium at 100 V in 0.1 mol dm −3 ammonium pentaborate electrolyte at 333 K, while amorphous structure of the anodic oxide is totally retained during anodizing of magnetron sputtered Nb–12 at%Si. Even after prior thermal treatment in air, which accelerates field crystallization of anodic oxide on niobium, no crystallization occurs on the Nb–12 at%Si. Through examination of the crystallization behaviours of anodic films formed on a thin Nb–12 at%Si layer superimposed on a niobium layer as well as on a thin niobium layer superimposed on an Nb–12 at%Si layer, it has been confirmed that air-formed oxide or thermal oxide becomes a nucleation site for crystallization. Modification of the air-formed or thermal oxide by incorporation of silicon species inhibits the nucleation of crystalline oxide. The modification, however, does not influence the growth of crystalline oxide. The growth is suppressed by continuous incorporation of silicon species into anodic film from the substrate during anodizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.