Abstract
In human diploid skin fibroblasts in culture we have shown that nonhydroxylated collagen precursors remain in the cell when proline hydroxylation is inhibited by α, α′-dipyridyl, a chelator of ferrous ions. The inhibition of proline hydroxylation is reversed by addition of fresh medium containing 50 μg per ml of sodium ascorbate, whereupon nonhydroxylated collagen precursors are hydroxylated within the cell and extruded into the medium. Extrusion of collagen already formed within the cell is not appreciably affected by α, α′-dipyridyl inhibition. Under normal conditions collagen is released from the monolayer into the medium within 3 hr of a pulse ofL[14C]proline. In the presence of α, α′-dipyridyl, about 35% of theL[14C]proline incorporated into protein is released into the medium within 8 hr as a proline-rich, hydroxyproline-deficient protein; at the same time, approximately 15% of the protein-boundl-[14C]proline remains in the cell for as long as 12 hr. When proline hydroxylation is restored after 2 and 12 hr of α, α′-dipyridyl inhibition, approximately the same amount of hydroxyproline is formed after each time interval in the monolayer. Therefore, nonhydroxylated collagen precursors retained in the cell are not appreciably degraded during at least 12 hr of inhibition by α, α′-dipyridyl and are extruded into the medium only upon restoration of hydroxylation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have