Abstract

Bacterial resistance to the aminoglycoside antibiotics is manifested primarily through the expression of enzymes which covalently modify these drugs. One important mechanism of aminoglycoside modification is through ATP-dependent O-phosphorylation, catalyzed by a family of aminoglycoside kinases. The structure of one of these kinases, APH(3')-IIIa has recently been determined by x-ray crystallography, and the general fold is strikingly similar to eukaryotic protein kinases (Hon, W. C., McKay, G. A., Thompson, P. R., Sweet, R. M., Yang, D. S. C., Wright, G. D., and Berghuis, A. M. (1997) Cell 89, 887-895). Based on this similarity, we have examined the effect of known inhibitors of eukaryotic protein kinases on two aminoglycoside kinases, APH(3')-IIIa and the enzyme AAC(6')-APH(2") which also exhibits acetyl-CoA-dependent aminoglycoside modification activity. We report that several known protein kinase inhibitors are also good inhibitors of aminoglycoside kinases. Compounds belonging to the isoquinolinesulfonamide group are especially effective in this regard, giving competitive inhibition in the micromolar range with respect to ATP and noncompetitive inhibition versus the aminoglycoside substrate. This study provides the basis for future aminoglycoside kinase inhibitor design and for the development of compounds which could reverse antibiotic resistance in the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.