Abstract

Progressive retinal ganglion cells (RGCs) death that triggered by retinal ischemia reperfusion (IR), leads to irreversible visual impairment and blindness, but our knowledge of post-IR neuronal death and related mechanisms is limited. In this study, we first demonstrated that apart from necroptosis, which occurs before apoptosis, ferroptosis, which is characterized by iron deposition and lipid peroxidation, is involved in the whole course of retinal IR in mice. Correspondingly, all three types of RGCs death were found in retina samples from human glaucoma donors. Further, inhibitors of apoptosis, necroptosis, and ferroptosis (z-VAD-FMK, Necrostatin-1, and Ferrostatin-1, respectively) all exhibited marked RGC protection against IR both in mice and primary cultured RGCs, with Ferrostatin-1 conferring the best therapeutic effect, suggesting ferroptosis plays a more prominent role in the process of RGC death. We also found that activated microglia, Müller cells, immune responses, and intracellular reactive oxygen species accumulation following IR were significantly mitigated after each inhibitor treatment, albeit to varying degrees. Moreover, Ferrostatin-1 in combination with z-VAD-FMK and Necrostatin-1 prevented IR-induced RGC death better than any inhibitor alone. These findings stand to advance our knowledge of the post-IR RGC death cascade and guide future therapy for RGC protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.