Abstract
Introduction: Retinal ischemia-reperfusion (IR) injury is associated with many ocular diseases. Retinal IR injury leads to the death of retinal ganglion cells (RGCs), loss of retinal function and ultimately vision loss. The aim of this study was to show the protective effects of prophylactic ozone administration against retinal IR injury.Materials and methods: A sham group (S) (n = 7) was administered physiological saline (PS) intraperitoneally (i.p.) for 7 d. An ischemia reperfusion (IR) group (n = 7) was subjected to retinal ischemia followed by reperfusion for 2 h. An ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 d. In the ozone + IR (O + IR) group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 d before the IR procedure and at 8 d, the IR injury was created (as in IR group). The rats were anesthetized after second hour of reperfusion and their intracardiac blood was drawn completely and they were sacrificed. Blood samples were sent to a laboratory for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total oxidant score (TOS) and total antioxidant capacity (TAC). The degree of retinal injury was evaluated according to changes in retinal cells and necrotic and apoptotic cells using the TUNEL method. Data were evaluated statistically with the Kruskal-Wallis test.Results: The number of RGCs and the inner retinal thickness were significantly decreased after ischemia, and treatment with ozone significantly inhibited retinal ischemic injury. In the IR group, the degree of retinal injury was found to be the highest. In the O + IR group, retinal injury was found to be decreased in comparison to the IR group. In the ozone group without retinal IR injury, the retinal injury score was the lowest. The differences in the antioxidant parameters SOD, GSH-Px and TAC were increased in the ozone group and the lowest in the IR group. The oxidant parameters MDA and TOS were found to be the highest in the IR group and decreased in the ozone group.Discussion: IR injury is also positively correlated with the degree of early apoptosis. This study demonstrated that ozone can attenuate subsequent ischemic damage in the rat retina through triggering the increase of the antioxidant capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.