Abstract
Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous invitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have