Abstract
The infrared small and dim (S&D) target detection is one of the key techniques in the infrared search and tracking system. Since the local regions similar to infrared S&D targets spread over the whole background, exploring the correlation amongst image features in large-range dependencies to mine the difference between the target and background is crucial for robust detection. However, existing deep learning-based methods are limited by the locality of convolutional neural networks, which impairs the ability to capture large-range dependencies. Additionally, the S&D appearance of the infrared target makes the detection model highly possible to miss detection. To this end, we propose a robust and general infrared S&D target detection method with the transformer. We adopt the self-attention mechanism of the transformer to learn the correlation of image features in a larger range. Moreover, we design a feature enhancement module to learn discriminative features of S&D targets to avoid miss-detections. After that, to avoid the loss of the target information, we adopt a decoder with the U-Net-like skip connection operation to contain more information of S&D targets. Finally, we get the detection result by a segmentation head. Extensive experiments on two public datasets show the obvious superiority of the proposed method over state-of-the-art methods, and the proposed method has a stronger generalization ability and better noise tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.