Abstract

In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection, an improved detection algorithm of infrared small and dim target is proposed in this paper. Firstly, the original infrared images are changed into a new infrared patch tensor mode through data reconstruction. Then, the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics, and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness. Finally, the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image, and the final small target is worked out by a simple partitioning algorithm. The test results in various space-based downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate. It is a kind of infrared small and dim target detection method with good performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call