Abstract

A step-scan Fourier-transform spectrometer coupled with a 6.4 m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of the reaction intermediate CH3SO2 radical, produced upon irradiation of a flowing gaseous mixture of CH3I and SO2 in CO2 at 248 nm. Two transient bands with origins at 1280 and 1076 cm(-1) were observed and are assigned to the SO2-antisymmetric and SO2-symmetric stretching modes of CH3SO2, respectively. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational, and rotational parameters of CH3SO2 and CH3OSO. Based on predicted rotational parameters, the simulated absorption band of the SO2-antisymmetric stretching mode that is dominated by the b-type rotational structure agrees satisfactorily with experimental results. In addition, a band near 1159 cm(-1) observed at a later period is tentatively attributed to CH3SO2I. The reaction kinetics of CH3 + SO2 --> CH3SO2 and CH3SO2 + I --> CH3SO2I based on the rise and decay of absorption bands of CH3SO2 and CH3SO2I agree satisfactorily with previous reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.