Abstract
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to monitor time-resolved infrared absorption of transient species produced upon irradiation at 248 nm of a flowing mixture of CH(3)SSCH(3) and O(2) at 260 K. Two transient bands observed with origins at 1397±1 and 1110±3 cm(-1) are tentatively assigned to the antisymmetric CH(3)-deformation and O-O stretching modes of syn-CH(3)SOO, respectively; the observed band contour indicates that the less stable anti-CH(3)SOO conformer likely contributes to these absorption bands. A band with an origin at 1071±1 cm(-1), observed at a slightly later period, is assigned to the S=O stretching mode of CH(3)SO, likely produced via secondary reactions of CH(3)SOO. These bands fit satisfactorily with vibrational wavenumbers and rotational contours simulated based on rotational parameters of syn-CH(3)SOO, anti-CH(3)SOO, and CH(3)SO predicted with density-functional theories B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ. Two additional bands near 1170 and 1120 cm(-1) observed at a later period are tentatively assigned to CH(3)S(O)OSCH(3) and CH(3)S(O)S(O)CH(3), respectively; both species are likely produced from self-reaction of CH(3)SOO. The production of SO(2) via secondary reactions was also observed and possible reaction mechanism is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.