Abstract

The unique attributes of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), their long carbon chains (n > 24) and high degree of unsaturation, impart unique chemical and physical properties to this class of fatty acids. The changes imparted by VLC-PUFA 32:6 n-3 on lipid packing and the compression moduli of model membranes were evaluated from π-A isotherms of VLC-PUFA in 1,2-distearoyl-sn-3-glycero-phosphocholine (DSPC) lipid monolayers. To compare the attractive or repulsive forces between VLC-PUFA and DSPC lipid monolayers, the measured mean molecular areas (MMAs) were compared with the calculated MMAs of an ideal mixture of VLC-PUFA and DSPC. The presence of 0.1, 1, and 10 mol % VLC-PUFA shifted the π-A isotherm to higher MMAs of the lipids comprising the membrane and the observed positive deviations from ideal behavior of the mixed VLC-PUFA:DSPC monolayers correspond to repulsive forces between VLC-PUFAs and DSPC. The MMA of the VLC-PUFA component was estimated using the measured MMAs of DSPC of 47.1 ± 0.7 Å2/molecule, to be 15,000, 1100, and 91 Å2/molecule at 0.1, 1, and 10 mol % VLC-PUFA:DSPC mixtures, respectively. The large MMAs of VLC-PUFA suggest that the docosahexaenoic acid tail reinserts into the membrane and adopts a nonlinear structure in the membrane, which is most pronounced at 0.1 mol % VLC-PUFA. The presence of 0.1 mol % VLC-PUFA:DSPC also significantly increased the compression modulus of the membrane by 28 mN/m compared with a pure DSPC membrane. The influence of VLC-PUFA on lipid “flip-flop” was investigated by sum-frequency vibrational spectroscopy. The incorporation of 0.1 mol % VLC-PUFA increased the DSPC flip-flop rate fourfold. The fact that VLC-PUFA promotes lipid translocation is noteworthy as retinal membranes require a high influx of retinoids which may be facilitated by lipid flip-flop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.