Abstract

Many lipophilic active substances, such as β-carotene, are sensitive to chemical oxidation. A strategy to protect these ingredients is encapsulation using nanoemulsions. This work analyzes the relationship between the physical stability and encapsulation efficiency of nanoemulsions based on linseed oil. The role of two different polysaccharides, Advanced Performance xanthan gum (APXG) or guar gum (GG) as stabilizers at different concentrations were studied to reach the required physical stability of these systems. This was investigated by means of droplet size distributions, steady-state flow curves, small amplitude oscillatory shear tests, multiple light scattering, and electronic microscopy. The overall results obtained reveal a depletion flocculation mechanism in all the APXG nanoemulsions, regardless of the concentration, and above 0.3 wt.% for GG nanoemulsions. Moreover, it has been demonstrated that enhanced physical stability is directly related to higher values of encapsulation efficiency. Thus, the nanoemulsion formulated with 0.2 wt.% GG, which presented the lowest creaming degree conditioned by depletion flocculation, showed a relative β-carotene concentration even above 80% at 21 days of aging time. In conclusion, the adequate selection of polysaccharide type and its concentration is a key point for the application of stable nanoemulsions as vehicles for active ingredients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.