Abstract

Addition of natural polymer or biopolymer is considered as a novel, cost-effective and eco-friendly soil modification approach mainly pertaining to erosion stability. The present study focuses on the interaction of three types of biopolymer i.e., xanthan gum, guar gum and carboxymethyl cellulose to stabilize two dispersive industrial waste materials i.e., fly ash and coal mine overburden soil. The results found that all the three biopolymers enhanced the index and geotechnical properties of fly ash and mine overburden due to their high viscosity, aggregation, adsorption and cross-linking bond formation. However, the rate of enhancement varies with the type and concentration of biopolymer. The biomodified soil were evaluated for erosion stability against wind and water by performing pinhole test, cylindrical dispersion, surface resistance and water retention test. It concluded that a very minimal fraction, 1% of biopolymer solution could mitigate the dispersiveness of the geomaterial. Additionally, the results of microscopic analysis by scanning electron microscope assist to correlate the morphological changes with the engineering properties of biomodified soil due to the interaction of soil with the long-chained biopolymers strings. Finally, leachate and cost analysis of the biopolymer modified material was assessed to evaluate the efficiency of the biomodification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.