Abstract

Abstract The structural response of girth-welded cylindrical steel members is affected by the weld-induced residual stresses and distortions. This paper presents finite element analyses to clarify the effects of the girth weld-induced imperfections on the structural behavior of the cylindrical steel members with medium diameter-to-thickness ratio. Finite element modeling of the girth weld-induced residual stresses and deformations is first described. Nonlinear finite element analyses in which the behavior of the cylindrical steel members in pure compression and in pure bending is explored incorporating the girth weld-induced imperfections are next discussed. Results showed that the weld-induced residual stresses and distortions should be taken into account in assessment of the structural behavior of the girth-welded cylindrical steel members subjected to pure compression or pure bending since the weld-induced imperfections always induce local buckling near the girth weld, which alters the load–displacement behavior and diminishes the ultimate load-carrying capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.