Abstract

CrTiN thin films are known to form a solid solution independent from the Ti content. Using a novel spatially separated synthesis approach, consisting of magnetron sputtering and atmospheric-pressure arc evaporation, artificial CrTiN nanocomposites were deposited. For the nanocomposite formation, TiN nanoparticles were synthesized using a transferred arc reactor and directly injected into growing CrN thin films using an aerodynamic lens system. The CrN and CrTiN thin films were deposited using various deposition conditions, such as heating power, substrate rotation velocity, nanoparticle injection distance, and cathode setup. The deposited thin films were analyzed regarding their physical structure, microstructure and mechanical properties. Based on the investigations, between 0.02 and 0.11 at.-% of TiN nanoparticles are embedded in the CrN matrix dependent on the deposition parameters. 2D GI-XRD experiments using synchrotron radiation confirm the nanocomposite structure for the two thin films with the highest TiN nanoparticle content. The crystallite size of the CrN thin film decreases from 9.4 ± 2.3 nm to 5.3 ± 1.2 nm due to the embedding of the nanoparticles. Concerning the physical structure, the nanoparticle injection leads to a change of the texture, as shown by the Debbye-Scherrer rings. Based on TEM-investigations, TiN nanoparticle agglomerates lead to a coarser microstructure of the CrN matrix. The hardness of the thin films is not significantly affected by the nanoparticle embedment. The nanoparticle injection distance and cathode setup reveal the highest impact on the film properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call