Abstract
Nanocomposite coatings are state of the art, nevertheless the possible material combinations are restricted. Therefore, this work demonstrates an approach to synthesize novel nanostructured thin films by producing the nanoparticles and thin films independently. An atmospheric-pressure transferred arc reactor is used to synthesize TiN nanoparticles. The device is linked to a magnetron sputter device with an aerodynamic lens system. The aerodynamic lens enables the in-situ introduction of the synthesized nanoparticles into the PVD chamber by compensating the pressure differences. In this study, the influence of the linkage on the properties of a CrN thin film as well as the chamber conditions (pressure, temperature, bias-voltage, and plasma) on the TiN nanoparticles are analyzed. The CrN thin film is only slightly affected by the incoming working gas of the nanoparticle reactor. The TiN nanoparticles reveal a crystallite size of 9.3 ± 2.3 nm and are successfully introduced into the PVD chamber as agglomerates with sizes of 0.04 μm2 and are then deposited onto substrates. It is shown that the particle distribution, agglomerate size, morphology, and crack behavior can be influenced by the chamber conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.