Abstract

Two alloys particularly rich in carbides, a nickel-based one reinforced by chromium carbides and a cobalt-based one strengthened by tantalum carbides were characterized by metallography and their hardness and thermal expansion behavior tested, after alloys had undergone a more or less long aging treatment at high temperature. Aging induces a progressive coarsening and/or fragmentation of these interdendritic carbides, with as first consequence a decrease in hardness. Also due to these morphology changes, aging the alloys on long time leads to a loss of effect of the carbides on the thermal expansion behavior of the alloys. The total thermal expansion, initially lowered by the rigid carbides network, is then free again. Indeed, the high temperature phenomenon of plastic or viscous-plastic deformation in compression of the matrix by the initial continuous carbides network has almost disappeared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.