Abstract

The electrochemical cell offers the promise of enabling controlled alteration of the morphology and islanding phenomena on metallic surfaces. Different diffusion processes near step and island edges are known to profoundly affect the growth mode, island sizes, island shapes and step morphology. Using the surface-embedded-atom model (SEAM) modified for the electrolytic environment, we calculate the dependence of the activation energies for these diffusion processes on the electrochemical potential for the Ag(100) and Ag(111) surfaces. While all these processes show some degree of dependence on the potential, the step-edge barrier and the edge diffusion processes are the most sensitive. Step-edge barriers for Ag(111) increase (to over 1eV) with a 1.0V potential (relative to the potential of zero charge (PZC)). The variations for Ag(100) are not as large (about 0.3eV), but the excess step-edge barrier can be negative for high positive (>+0.6V) or negative (<−0.4V) potentials owing to the competing roles of hopping and exchange diffusion processes and their dependencies on the potential. Edge diffusion decreases rapidly with potential for both (100) and (111) surfaces. Significant variations are also found for diffusion around corners and kinks, which play important roles in island morphology. We assess the influence these variations have on island sizes, shapes, diffusion, and coarsening. From this discussion, we show how the electrochemical potential can be used to control the fractal or compact nature of islands, and the magnitude and scaling exponent for island diffusion and coarsening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.