Abstract

The use of cemented tungsten carbide inserts in hard machining requires proper coatings and edge micro-geometries. A suitable choice of these factors enables the reduction of cutting forces, the increase of tool life and the improvement of workpiece surface quality. However, the effects of the edge preparation method and coating process on the substrate properties influence the performance of the insert during cutting. In this context, the influence of two different edge preparation methods (plunge-face grinding and brushing) on the performance of TiAlN-coated cemented tungsten carbide inserts during hard turning is investigated. In general, higher values of surface roughness (Rz≅0.3μm) and edge chipping (Rk≅4.5μm) were observed for brushed inserts in comparison to the ground tools (Rz≅0.2μm, Rk≅3.7μm). Moreover, higher compressive residual stresses are induced by brushing in comparison to grinding (≅500MPa against≅400MPa). In turning tests, cutting forces for the ground inserts are approximately 10% higher than for the brushed inserts. However, higher wear values are better related to lower compressive residual stresses in the substrate than to higher cutting forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.