Abstract

We compare the luminescence efficiency (i.e., room-temperature photoluminescence intensity), fluctuations in composition and thickness, degree of localization, and luminescence decay times of In0.37Ga0.63As0.983N0.017 quantum wells grown by molecular-beam epitaxy at different temperatures and annealed under a comprehensive variety of conditions. Luminescence efficiency is not directly coupled to structural nonuniformity or localization, and even three-dimensional growth is not detrimental by itself. In contrast, there is always a correlation between luminescence efficiency and nonradiative decay time. Therefore, the luminescence efficiency of InGaAsN quantum wells depends almost exclusively on the density of nonradiative recombination centers, while the influence of structural nonuniformity is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.