Abstract

<p>Black carbon (BC) is the most important light-absorbing species in the atmosphere and has a strong positive direct radiative forcing. In-cloud scavenging is the major way to wash out BC from the atmosphere. Understanding the connection between its physico-chemical properties and scavenging efficiency is therefore a key to evaluate its lifetime, atmospheric burden and spatial distribution. During an intensive field campaign conducted in the North China Plain in 2019, a ground-based counterflow virtual impactor was utilized to separate fog droplets in radiation fog events. BC mass and mixing state of fog droplet residues were online measured with a single particle soot photometer (SP2). In a strong radiation fog event with visibility of about 50 m, more than 20% fog droplets are found to contain a BC core. BC scavenging efficiency is found to be strongly determined by its diameter and mixing state. Driven by different mechanisms, higher scavenging efficiencies up to 10% are observed for larger and smaller BC particles, and the minimum efficiency is found at BC diameter of 120 nm. For large core (>120 nm) BC-containing particles, the scavenging efficiency increases significantly with coating thickness (CT), from about 10% for CT<100 nm to 80% for CT>300 nm. Chemical composition may also be a key parameter influencing the scavenging of BC. Based on the observation of 3 fog events, parameterizations of BC scavenging efficiency are also given in this study.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call