Abstract
<p>Black carbon (BC) is the most important light absorbing component in the atmosphere and has significant impacts on the climate, environment and public health. Its effects depend not only on its spatial-temporal distribution, but also on its physico-chemical characteristics. Mixing state is one of the most important properties of BC and strongly determines its hygroscopicity and radiative properties. During an intensive field campaign conducted in the North China Plain in winter 2018, mass-based mixing state of BC-containing particles were online measured with a Centrifugal Particle Mass Analyzer and Single Particle Soot Photometer (CPMA-SP2) tandem system. This technique directly provides the mass ratio of non-refractory coating matter to BC core (M<sub>R</sub>) in individual particles and does not require to assume the density, morphology and refractive index of BC core and coating in data retrieval, therefore has lower uncertainly compared with leading-edge fit technique. In our measurement, the mean number fraction of uncoated (M<sub>R</sub>=0), thin coated (0<M<sub>R</sub><3) and thick coated (M<sub>R</sub>≥3) BC-containing particle during the campaign were respectively ~10%, ~35% and ~55%, indicating the strong aging process of BC-containing particle in the North China Plain. The median value of M<sub>R</sub> was much higher in polluted days than clean days, for example, the median value of M<sub>R</sub> with a particle mass of 8.56 fg (~220 nm in diameter) for polluted and clean days were ~3.2 and ~1.6, respectively. The mixing state of BC-containing particles obtained by different methods were also compared and evaluated.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.