Abstract

We have studied the influence of SiO2 and TiO2 dielectric layers on the atomic intermixing of InxGa1−xAs/InP quantum well structures using the impurity-free vacancy disordering technique. Photoluminescence results revealed that an enhancement of interdiffusion was obtained when the samples were capped with SiO2. Although TiO2 layers were able to suppress the interdiffusion in the InGaAs/InP system, the suppression was not significant compared to the AlGaAs/GaAs system. Based on a fitting procedure that was deconvoluted from the photoluminescence spectra as well as a theoretical modeling, the electron–heavy hole and electron–light hole transitions were identified, and a ratio of the group V to the group III diffusion coefficients (k) was obtained. The k ratio of the InGaAs/InP samples capped with SiO2 is relatively larger than that of samples capped with TiO2 layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.