Abstract

The status of the American crocodile (Crocodylus acutus) has long been a matter of concern in Everglades National Park (ENP) due to its classification as a federal and state listed species, its recognition as a flagship species, and its function as an ecosystem indicator. Survival and recovery of American crocodiles has been linked with regional hydrological conditions, especially freshwater flow to estuaries, which affect water levels and salinities. We hypothesize that efforts to restore natural function to Everglades ecosystems by improving water delivery into estuaries within ENP will change salinities and water levels which in turn will affect relative density of crocodiles. Monitoring ecological responses of indicator species, such as crocodiles, with respect to hydrologic change is necessary to evaluate ecosystem responses to restoration projects. Our objectives were to monitor trends in crocodile relative density within ENP and to determine influences of salinity on relative density of crocodiles. We examined count data from 12 years of crocodile spotlight surveys in ENP (2004–2015) and used a hierarchical model of relative density that estimated relative density with probability of detection. The mean predicted value for relative density (λ) across all surveys was 2.9 individuals/km (95% CI: 2.0–4.2); relative density was estimated to decrease with increases in salinity. Routes in ENP’s Flamingo/Cape Sable area had greater crocodile relative density than routes in the West Lake/Cuthbert Lake area and Northeast Florida Bay areas. These results are consistent with the hypothesis that restored flow and lower salinities will result in an increase in crocodile population size and provide support for the ecosystem management recommendations for crocodiles, which currently are to restore more natural patterns of freshwater flow to Florida Bay. Thus, monitoring relative density of American crocodiles will continue to be an effective indicator of ecological response to ecosystem restoration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.