Abstract

The Tibetan Plateau, known for its high elevation and sparse population distribution, heavily depends on gridded population data to enhance disaster prevention and management strategies. This study utilizes multi-source physical geographic and socio-economic factors to delineate the population distribution across the plateau. Using data from the seventh National Census in 2020, we apply three individual machine learning methods (Random Forest, GBDT, and XGBoost) and two multi-model ensemble methods (weighted average ensemble and stacking ensemble) to spatialize the population data into a 100-meter grid. The results reveal that the spatialization accuracy of all models exceeds that of the WorldPop dataset. Specifically, the Random Forest model (RMSE = 4061.09, nRMSE = 44.71 %) and the stacking ensemble model (RMSE = 4094.47, nRMSE = 44.26 %) demonstrate the highest accuracy among the individual and ensemble models, respectively. Emphasizing the importance of integrating multi-source big data, Tencent location-based services data emerges as a crucial variable across all models. This study highlights the effectiveness of ensemble models and multi-source big data in improving population mapping accuracy, especially in regions with complex terrains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.