Abstract

The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum, an ecologically important species. Changes in salinity from 20–32 caused no measurable variation in cell growth or culture yield, but increased intracellular DMSP per cell by 30%. Nitrogen limitation caused up to a two-fold increase in total DMSP per cell and up to a three-fold increase in DMS per cell. These changes in DMSP and DMS per cell in the Skeletonema costatum cultures with nitrogen limitation and changing salinity were primarily attributed to the physiological functions of DMSP as an osmolyte and an antioxidant. The data obtained in this study indicated that nitrogen limitation and salinity may play an important role in climate feedback mechanisms involving biologically derived DMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call