Abstract

Dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species. Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS. The results demonstrated that both algal species could produce DMS, but the average concentration of DMS per cell in S. trochoidea (12.63 fmol/L) was about six times that in P. minimum (2.01 fmol/L). DMS and DMSP concentrations in algal cultures varied significantly at different growth stages, with high release during the late stationary growth phase and the senescent phase. DMS production induced by three salinities (22, 28, 34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity, which might result from intra-cellular DMSP up-regulation with the change of osmotic stress. Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production, and clarifies the influence of salinity conditions on the release of DMS and DMSP. As S. trochoidea and P. minimum are harmful algal bloom species with high DMS production, they might play an additional significant role in the sulfur cycle when a red tide occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call