Abstract
At three stages of flowering shoot development, varying the irradiance and CO2 levels had a similar effect on the whole-plant net CO2 exchange rate (NCER) of Samantha rose plants. At 22 °C, the NCER was saturated at 1000 μmol m−2 s−1 photosynthetically active radiation (PAR). The duration of the light period was also important in determining daily carbon (C) gain. When roses were exposed to a constant daily radiant energy dose of 17.6 μmol m−2 provided either as a 12-h irradiation interval at 410 μmol m−2 s−1 PAR or 24 h of irradiation at 204 μmol m−2 s−1 PAR, the plants exposed to 24 h of continuous irradiation at the lower photon flux density retained 80% more C. Under saturating irradiance, the net photosynthetic rate at an enriched (1000 μL L−1) CO2 level was almost double that at ambient (350 μL L−1) CO2. However, plants grown at ambient and enriched CO2 levels had similar whole-plant NCERs when compared at the same assay CO2 level. Under CO2 enrichment the flower stem was longer and thicker but the flower bud size at harvest was not significantly different to that of roses grown at the ambient CO2 level. Key words: CO2 enrichment, daily carbon gain, net CO2 exchange rate, radiation, Rosa hybrida
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have