Abstract

The CVD diamond film with favorable adhesion and relatively thinner thickness is essential facing for its application on drills for machining carbon fiber reinforced plastics (CFRP), with regard to either the tool lifetime or the machining quality. A 500-nm-thick CrN layer was deposited by the cathode arc technique on slight chemical etched WC–Co 6[Formula: see text]wt.% drill, and nano-crystalline diamond (NCD) is subsequently deposited by the hot filament chemical vapor deposition (HFCVD) technique. The same NCD film is also deposited on the drills pretreated only by the slight chemical etching or the CrN interlayer, which are adopted as comparisons in the present study. The nucleation and growth of diamond film and the cutting performance of the coated drills are systematically studied. The results show that the drill pretreated by the slight chemical etching and CrN interlayer can acquire highest nucleation density (ND) compared to the other pretreatment methods as it sufficiently prevents the Co diffusion. The diamond-coated drill with deep chemical etching was used for comparison to study the machining quality when drilling CFRP. During machining the CFRP, the failure mode of the diamond-coated drill is mainly the delamination and peeling off of the diamond film at areas with stress concentration, while the diamond-coated drill pretreated by slight chemical etching [Formula: see text] CrN interlayer can retard such failure. The exit hole quality of CRFP machined by drill pretreated with slight chemical etching [Formula: see text] CrN interlayer is better than that by drill pretreated with deep chemical etching, which is ascribed to the different cutting edges of the drills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call