Abstract

The astrophysical S-factor for the direct [Formula: see text] capture reaction is calculated in a three-body model based on the hyperspherical Lagrange-mesh method. A sensitivity of the E1 and E2 astrophysical S-factors to the orthogonalization method of Pauli forbidden states in the three-body system is studied. It is found that the method of orthogonalising pseudopotentials (OPP) yields larger isotriplet ([Formula: see text]) components than the supersymmetric transformation (SUSY) procedure. The E1 astrophysical S-factor shows the same energy dependence in both cases, but strongly different absolute values. At the same time, the E2 S-factor does not depend on the orthogonalization procedure. As a result, the OPP method yields a very good description of the direct data of the LUNA collaboration at low energies, while the SUSY transformation strongly underestimates the LUNA data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.