Abstract

The astrophysical S-factor and reaction rate of the direct capture process $\alpha+d$ $\rightarrow$ $^6$Li + $\gamma$, as well as the abundance of the $^6$Li element are estimated in a three-body model. The initial state is factorized into the deuteron bound state and the $\alpha+d$ scattering state. The final nucleus $^6$Li(1+) is described as a three-body bound state $\alpha+n+p$ in the hyperspherical Lagrange-mesh method. Corrections to the asymptotics of the overlap integral in the S- and D-waves have been done for the E2 S-factor. The isospin forbidden E1 S-factor is calculated from the initial isosinglet states to the small isotriplet components of the final $^6$Li(1+) bound state. It is shown that the three-body model is able to reproduce the newest experimental data of the LUNA collaboration for the astrophysical S-factor and the reaction rates within the experimental error bars. The estimated $^6$Li/H abundance ratio of $(0.67 \pm 0.01)\times 10^{-14}$ is in a very good agreement with the recent measurement $(0.80 \pm 0.18)\times 10^{-14}$ of the LUNA collaboration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.