Abstract
The analysis of aerodynamic and heat structure of flow in high-frequency inductive plasma torch has been carried out. The range of plasma torch power is measured in dozens of kilowatts. The numerical simulation methods of the turbulent flow in the plasma torch affected by high frequency electromagnetic field without considering the chemical kinetics are used during the research. The data of temperature field and induced current density in the plasma torch depending on current amperage and frequency are obtained. Also, these data are obtained depending on the flow scheme in the operated on argon and air plasma torches. The inductive plasma torches can be applied to solve a wide range of tasks such as activation of coal-dust mixture with its further gasification, coating process for the stabilization of combustion processes as well as for the recycling processes at the mobile seaport recycling complexes. The calculations demonstrated convincingly the advantage of the operation of plasma torches with reverse vortex flow over plasma torches with “direct” vortex flow. Moreover the obtained data allow executing the assessment of thermal efficiency of inductive plasma jet and obtaining its optimal operational modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.