Abstract

Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields. However, due to the random copolymer chain configuration, it is difficult to obtain high proportion of β-phase even under the influence of β-nucleating agent (β-NA). In this study, the melt structure (namely, the content of ordered structures in the melt) of β-nucleated ethylene-copolymerized PPR (β-PPR) was controlled by tuning the fusion temperature (Tf), and its impact on the crystallization and polymorphic behavior of β-PPR was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized optical microscopy (PLM) and scanning electronic microscopy (SEM). The result revealed that compared with the β-nucleated iPP homo-polymer, it is more difficult for β-PPR to form β-crystals; interestingly, when Tf is in the temperature range of 162–173°C, the ordered structures survived in melt exhibit high β-nucleation efficiency under the influence of β-NA, resulting in significant increase of β-phase proportion and evident variation of crystalline morphology, which is called the Ordered Structure Effect (OSE). Moreover, through investigating the self-nucleation behavior and equilibrium melting temperature of pure PPR (non-nucleated PPR), the physical nature of the lower and upper limiting Tf temperatures for the occurrence of OSE in β-PPR was explored; the role of ethylene co-monomer in the occurrence of OSE was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.