Abstract

Abstract This research designed a series of novel approaches aiming to tackle a long-standing problem that is the brittleness of polypropylene (PP) random copolymer (PPR) at low temperature. By introducing polyolefin elastomer (POE), the toughness of PPR was improved; talc improved the stiffness of PPR, low density polyethylene (LDPE) or high density PE (HDPE) improved the low temperature toughness of PPR, and annealing treatment also improved the low temperature toughness of PPR significantly. The addition of dicumyl peroxide (DCP) and triallyl isocyanurate (TAIC) increased its stiffness through the formation of cross-linking networks. Also, the crystallization behavior and morphology were investigated in detail. Differential scanning calorimetry (DSC) results indicated that the adoption of annealing treatment can improve the crystallinity of PPR, while a polarizing microscope revealed that the incorporation of foreign matter can facilitate the crystallization process of the matrix. X-ray diffraction (XRD) tests showed an unchanged polymorphic composition of PPR after introducing different additives, and scanning electron microscopy (SEM) indicated that annealing treatment can enhance interfacial interactions between the matrix and fillers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.