Abstract

AbstractMechanical grinding creates mechanical as well as thermal stress in treated material and the so‐called Beilby layer is formed. The present work investigates the influence of abrasive coarse grain size on the thickness and electrochemical behavior of the native oxide layer formed after the grinding process by using cyclovoltammetry. The difference in the native oxide layer thickness amounts to Δd ≈ 0.5 nm under the surface conditions investigated. Additionally, an experimental design is introduced and tested, which allows the operando measuring of the temperature of the material during the grinding process. Estimates result in a thermal stress Δσ between 0.8 and 1.3 MPa depending on the chosen grinding parameters and influence the subsequently formed oxide layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.