Abstract
The effect of Maillard reaction products (MRPs) on induced DNA damage in human lymphocytes was investigated using single-cell gel electrophoresis (comet assay). Three MRPs, Xyl-Lys MRP, Glu-Lys MRP, and Fru-Lys MRP, were prepared by heating lysine with xylose, glucose, and fructose, respectively, at pH 9.0 and 100 degrees C for 3 h and called undialyzed MRPs. The prepared MRPs were further dialyzed, and three undialyzable MRPs were obtained. The undialyzed MRPs caused significant (p < 0.05) DNA damage in human lymphocytes at a concentration of 0.05-0.1 mg/mL by the comet assay. Compared with the control, the undialyzable Xyl-Lys MRP and Glu-Lys MRP caused significant DNA damage in human lymphocytes at a concentration >0.1 mg/mL, whereas Fru-Lys MRP did so at a concentration >0.2 mg/mL. Moreover, undialyzed MRPs caused less DNA damage than did undialyzable MRPs. The undialyzable MRPs did not affect the activity of glutathione peroxidase or lipid peroxidation in human lymphocytes at a concentration of 0.05-0.8 mg/mL. However, these three undialyzable MRPs decreased the glutathione (GSH) contents and the activities of GSH reductase and catalase in human lymphocytes. On the basis of the results of the formation of 8-hydroxy-2'-deoxyguanosine, radicals, and hydrogen peroxide, the radicals might play an important role in the DNA damage in human lymphocytes induced by these MRPs in this reaction system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have