Abstract
In this paper, the finite volume method (FVM) is used for the simulation of flip chip underfill process by considering non-Newtonian flow between two parallel plates that emulate the silicon die and the substrate. 3D model of two parallel plates of size 12.75 mm × 9.5 mm with gap heights of 5 μm, 15 μm, 25 μm, 35 μm, 45 μm, and 85 μm are developed and simulated by computational fluid dynamic (CFD) code, fluent 6.3.26. The flow is modeled by using power law model and volume of fluid (VOF) technique is applied for flow front tracking. The effect of change in height of the gap between the plates on the underfill process is mainly studied in the present work. It is observed that the gap height has significant influence on the melt filling time and pressure drop, as the gap height decreases filling time and pressure drop increase. The simulation results are compared with previous experimental results and found in good conformity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have