Abstract

This paper focuses on the evaluation of subsequent process steps (post-trench processes, PTPs) after 4H silicon carbide (4H-SiC) trench etching with respect to the electrical performance of trenched gate metal oxide semiconductor field effect transistors (Trench-MOSFETs). Two different types of PTP were applied after 4H-SiC trench formation, a high temperature post-trench anneal (PTA) [1] and a sacrificial oxidation (SacOx) [2]. We found significantly improved electrical properties of Planar-MOS structures using a SacOx as PTP, prior to gate oxide deposition. Besides excellent quasi-static capacitance-voltage (QSCV) behavior even at T = 250 °C, charge-to-breakdown (QBD) results up to 8.8 C/cm2 at T = 200 °C are shown to be similar on trenched surfaces as well as on untrenched surfaces of SacOx-treated Planar-MOS structures. Moreover, dielectric breakdown field strengths up to 12 MV/cm have been measured on Planar-MOS structures. However, thick bottom oxide Trench-MOS structures indicate best dielectric breakdown field strengths of 9.5 MV/cm when using a trench shape rounding PTA as the PTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call