Abstract

The bulk copper ferrite nanomaterials are synthesized by co-precipitation technique. The vibrating sample magnetometer measurement for bulk CuFe 2O 4 reveals its unsaturated superparamagnetic behavior. The crystallites of the synthesized nanomaterial are in cubic form having an average size of ~ 100 Å and are used as target to prepare thin films of various thicknesses (600, 900 and 1100 nm) by radio frequency magnetron sputtering technique. X-ray peaks arise only when films are annealed at 1200 °C and also they are found to be in tetragonal structure. The magnetic characteristics of 900 nm unirradiated CuFe 2O 4 thin film exhibit superparamagnetic behavior and have an unsaturated magnetic moment at high field. Magnetic force microscopy images of unirradiated CuFe 2O 4 thin films confirm the soft nature of the magnetic materials. The 150 MeV Ni 11+ swift heavy ion irradiation on these thin films at the fluence of 1 × 10 14 ions/cm 2 modifies the polycrystalline nature due to electron–phonon coupling. Atomic force microscopy image shows that the swift heavy ion irradiation induces agglomeration of particles in 600 and 900 nm thin films and increases rms surface roughness from 33.43 to 39.65 and 69.7 to 102.46 nm respectively. However, in 1100 nm film, holes are created and channel-like structures are observed along with a decrease in the rms surface roughness from 75.12 to 24.46 nm. Magnetic force microscopy images of 900 nm irradiated thin film explain the formation of domains on irradiation and are also supported by the ferromagnetic hysteresis observed using vibrating sample magnetometer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.