Abstract
Inflammation plays an important role in cardiac dysfunction under different situations. Acute systemic inflammation occurring in patients with severe burns, trauma, and inflammatory diseases causes cardiac dysfunction, which is one of the leading causes of mortality in these patients. Acute sepsis decreases cardiac contractility and impairs myocardial compliance. Chronic inflammation such as that occurring in Duchenne muscular dystropshy and myocarditis may cause adverse cardiac remodeling including myocyte hypertrophy and death, fibrosis, and altered myocyte function. However, the underlying cellular and molecular mechanisms for inflammatory cardiomyopathy are still controversial probably due to multiple factors involved. Potential mechanisms include the change in circulating blood volume; a direct inhibition of myocyte contractility by cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β); abnormal nitric oxide and reactive oxygen species (ROS) signaling; mitochondrial dysfunction; abnormal excitation-contraction coupling; and reduced calcium sensitivity at the myofibrillar level and blunted β-adrenergic signaling. This review will summarize recent advances in diagnostic technology, mechanisms, and potential therapeutic strategies for inflammation-induced cardiac dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.