Abstract

We prove new optimality results for adaptive mesh refinement algorithms for non-symmetric, indefinite, and time-dependent problems by proposing a generalization of quasi-orthogonality which follows directly from the inf-sup stability of the underlying problem. This completely removes a central technical difficulty in modern proofs of optimal convergence of adaptive mesh refinement algorithms and leads to simple optimality proofs for the Taylor-Hood discretization of the stationary Stokes problem, a finite-element/boundary-element discretization of an unbounded transmission problem, and an adaptive time-stepping scheme for parabolic equations. The main technical tools are new stability bounds for the L U LU -factorization of matrices together with a recently established connection between quasi-orthogonality and matrix factorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.