Abstract
We describe the development and implementation of a block-based adaptive mesh refinement (AMR) algorithm for solving the discrete ordinates neutral particle transport equation. AMR algorithms allow mesh refinement in areas of interest without requiring the extension of this refinement throughout the entire problem geometry, minimizing the number of computational cells required for calculations. The block-based AMR algorithm described here is a hybrid between traditional cell or patch-based approaches and is designed to allow an efficient parallel solution of the transport equation while still reducing the cell count.This paper discusses the data structure implementation and CPU/memory efficiency for our Block AMR method, the equations and procedures used in mapping edge fluxes between blocks of different refinement levels for both diamond and linear discontinuous spatial discretizations, effects of AMR on mesh convergence, and our approach to parallelization. Comparisons between our Block AMR method and a traditional single-level mesh are presented for a sample brachytherapy problem. The Block AMR results are shown to be significantly faster for this problem (on at least a few processors), while still returning an accurate solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.