Abstract

Inert substrate-supported microtubular solid oxide fuel cells (MT-SOFCs) are attractive due to their advantages, including high reduction–oxidation (redox) cycling stability and thermal cycling tolerance. A method involving sequential dip-coating, leaching, and co-sintering was developed and applied to fabricate inert substrate-supported MT-SOFCs through acid leaching nickel from the conventional Ni–yttria-stabilized zirconia (YSZ) anode. A thin current collector was deposited onto the support surface to minimize the current collection losses by collecting current from the entire surface area of the anode. A dense electrolyte could be obtained at a co-sintering temperature of 1250 °C. The produced MT-SOFC with the configuration of porous zirconia support/Ni–Scandia-stabilized zirconia (SSZ) anode current collector/Ni-SSZ anode/SSZ electrolyte/strontium-doped lanthanum manganite (LSM)-SSZ cathode/LSM cathode current collector was evaluated by electrochemical characterization tests. The inert substrate-supported MT-SOFC exhibited the maximum power densities of 616, 542, 440, and 300 mW cm−2 at 800, 750, 700, and 650 °C, respectively using dry hydrogen and air. In addition, the thermal cycling stability of the MT-SOFC was evaluated. The cell survived from thermal cycling tests and came out intact after 50 thermal cycles between 700 °C and 400 °C during an operation time of 50 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.