Abstract

We establish conditions for the discrete versions of logarithmic concavity and convexity of the higher order regularized basic hypergeometric function with respect simultaneous shift of all its parameters. For a particular case of Heine's basic hypergeometric function we prove logarithmic concavity and convexity with respect to the bottom parameter. We further establish a linearization identity for the generalized Tur\'{a}nian formed by a particular case of Heine's basic hypergeometric function. Its $q=1$ case also appears to be new.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.