Abstract
Industrial water consumption is a major component of the total regional water consumption. Accurate and scientific prediction of industrial water consumption is an essential guide to the rational use of natural resources. In this paper, we proposed a combined model of CEEMD (collective empirical modal decomposition) and ARIMA (autoregressive integrated moving average) for forecasting industrial water consumption to establish an accurate and efficient forecasting model, because of the poor generalization ability of most current industrial water consumption forecasting models. The influencing factors of industrial water consumption are complex, and the data are non-stationary. "Decomposition-prediction-reconstruction" is one of the significant methods for forecasting time series data, and the data decomposition has a suppressive influence on the modal mixing problem in the EMD decomposition procedure. Based on the smoothing ability of CEEMD for non-smooth signals and the better adaptation of the autoregressive moving average prediction model (ARIMA), a combined CEEMD-ARIMA model was established for industrial water consumption forecasting. This study was conducted for industrial water consumption in Henan Province in central China. The results suggest the combined CEEMD-ARIMA model has a favorable forecasting effect, with an average relative percentage error of 1.96%, and mean square error (MSE) of 0.35, a Nash efficiency coefficient (NSE) of 0.95, a prediction pass rate of 100%, and a better prediction accuracy than the ARIMA model and the combined EEMD-ARIMA model. It provides an effective prediction method for the prediction of industrial water consumption and has good application prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.