Abstract

We give a general, physical description of "induced-charge electro-osmosis" (ICEO), the nonlinear electrokinetic slip at a polarizable surface, in the context of some new techniques for microfluidic pumping and mixing. ICEO generalizes "ac electro-osmosis" at microelectrode arrays to various di-electric and conducting structures in weak dc or ac electric fields. The basic effect produces microvortices to enhance mixing in microfluidic devices, while various broken symmetries--controlled potential, irregular shape, nonuniform surface properties, and field gradients--can be exploited to produce streaming flows. Although we emphasize the qualitative picture of ICEO, we also briefly describe the mathematical theory (for thin double layers and weak fields) and apply it to a metal cylinder with a dielectric coating in a suddenly applied dc field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.